Enrollment No: Exam Seat No:

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Differential Equations

Subject Code: 5SC01DIE1 Branch: M.Sc. (Mathematics)

Date: 28/11/2018 Time: 02:30 To 05:30 Semester: 1 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

Q-1 Attempt the following questions (07)

- **a.** Determine the radius of convergence of e^x . (02)
- **b.** Show that $P_n(x) = (-1)^n P_n(-x)$, where $n \in \mathbb{N} \cup \{0\}$. (02)
- **c.** $\int_{-1}^{1} J_1(x) \ dx =$ ______. (01)
- d. Find the singular points of the differential equation (01) $x(x-1)y'' + x^2y' + y = 0.$
- State orthogonal property of Bessel's function. (01)

(14) Q-2 Attempt all questions

- **a.** Find the power series solution in powers of (x 1) of the initial value problem (05)xy'' + y' + 2y = 0, y(1) = 1, y'(1) = 2.
- **b.** Using the method of variation of parameters, solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} = e^x \sin x$. **c.** Express $Q(x) = 4x^3 2x^2 3x + 8$ in terms of Legendre's polynomials. (05)
- (04)

Q-2 Attempt all questions **(14)**

- **a.** Prove that $e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{n=-\infty}^{\infty} J_n(x) t^n$. **b.** Obtain power series solution of the differential equation y'' + xy' + y = 0 about (05)
- (05)
- c. Show that infinity is not a regular singular point of the Bessel equation (04) $x^{2}v^{"} + xv^{'} + (x^{2} - n^{2})v = 0.$

Q-3 Attempt all questions (14)

a. Prove that (06)

$$(1) J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x,$$

(2)
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
.

	b.	Expand $f(x)$ in the form $\sum_{n=0}^{\infty} c_n P_n(x)$, where $f(x) = \begin{cases} 0, -1 < x < 0 \\ 1, 0 < x < 1 \end{cases}$.	(05)
	c.	Find a recurrence formula for the power series solution around $x = 0$ for the differential equation $y'' - xy' + 2y = 0$.	(03)
0.2		OR	(1.4)
Q-3	a.	Attempt all questions Show that $\int_{-1}^{1} P_n(x) (1 - 2tx + t^2)^{-\frac{1}{2}} dx = \frac{2t^n}{2n+1}$, when $ t < 1$ and $ x \le 1$.	(14) (06)
	h	Use the method of Frobenius to find one solution near $x = 0$ of	(05)
	υ.	$x^2y'' - xy' + y = 0.$	(03)
	c.	When <i>n</i> is a nonnegative integer, show that $\frac{d^n}{dx^n}J_n(x)\Big _{x=0}=\frac{1}{2^n}$.	(03)
		SECTION – II	
Q-4		Attempt the following questions	(07)
	a.	Show that the partial differential equations $p = 6x - 4y + 1$, $q = 4x + 6y + 1$ do not have any common solution.	(02)
	b.	Eliminate a and b from $z = axe^y + \left(\frac{1}{2}\right)a^2e^{2y} + b$.	(02)
	c.	Define: Semi-linear equation.	(01)
	d.	Find a complete integral of $z = px + qy + \sin(p + q)$.	(01)
	e.	Define: Pochhammer symbol.	(01)
Q-5		Attempt all questions	(14)
	a.	Prove that if \vec{X} is a vector such that $\vec{X} \cdot curl \vec{X} = 0$ and μ is an arbitrary function	(05)
	b.	of x , y , z , then $\mu \vec{X} \cdot curl \ \mu \vec{X} = 0$. Prove that $(1) \log(1-x) = -x \ F(1,1;2;x),$	(05)
		$(2) \lim_{a\to\infty} F\left(1,a;1;\frac{x}{a}\right) = e^x.$	
	c.	Show that the equations $f(x, y, p, q) = 0$ and $g(x, y, p, q) = 0$ are compatible if $\frac{\partial (f,g)}{\partial (x,p)} + \frac{\partial (f,g)}{\partial (y,q)} = 0$.	(04)
		OR	
Q-5		Attempt all questions	(14)
	a.	Prove that a necessary and sufficient condition that there exists between two functions $u(x, y)$ and $v(x, y)$ a relation $F(u, v) = 0$, not involving x and y explicitly is that $\frac{\partial (u, v)}{\partial (x, v)} = 0$.	(05)
	b.	Show that $\frac{d}{dx} F(\alpha, \beta; \gamma; x) = \frac{\alpha \beta}{\gamma} F(\alpha + 1, \beta + 1; \gamma + 1; x)$ and deduce that	(05)
		$\frac{d^n}{dx^n} F(\alpha, \beta; \gamma; x) = \frac{(\alpha)_n(\beta)_n}{(\gamma)_n} F(\alpha + n, \beta + n; \gamma + n; x).$	
	c.	Solve: $p - 2q = 3x^2 \sin(y + 2x)$.	(04)
Q-6		Attempt all questions	(14)
	a. b	Find a complete integral of the equation $(p^2 + q^2)y = qz$ by Charpit's method.	(06)
	b.	Verify that the Pfaffian differential equation $y(1+z^2)dx + x(1+z^2)dy + xydz = 0$	(05)
		isintegrable and find its solution.	
	c.	Form a partial differential equation by eliminating the function f from $f(z + xy, x^2 + y^2) = 0$.	(03)

(03)

(05)

Attempt all questions Q-6

(06)

a. Find a complete integral of $z^3 = pqxy$ by Jacobi's method. **b.** Find the third approximation of the solution of the equation (05)

$$\frac{dy}{dx} = 3e^x + 2y, y(0) = 0$$

by Picard's method.
c. Solve:
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$$
. (03)

