C.U.SHAH UNIVERSITY
 Winter Examination-2018

Subject Name: Differential Equations

Subject Code: 5SC01DIE1
Semester: 1

Date: 28/11/2018

Branch: M.Sc. (Mathematics)
Time: 02:30 To 05:30
Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I

Attempt the following questions
a. Determine the radius of convergence of e^{x}.
b. Show that $P_{n}(x)=(-1)^{n} P_{n}(-x)$, where $n \in \mathbb{N} \cup\{0\}$.
c. $\int_{-1}^{1} J_{1}(x) d x=$ \qquad _.
d. Find the singular points of the differential equation
$x(x-1) y^{\prime \prime}+x^{2} y^{\prime}+y=0$.
e. State orthogonal property of Bessel's function.

Q-2 Attempt all questions

a. Find the power series solution in powers of $(x-1)$ of the initial value problem

$$
\begin{equation*}
x y^{\prime \prime}+y^{\prime}+2 y=0, y(1)=1, y^{\prime}(1)=2 . \tag{14}
\end{equation*}
$$

b. Using the method of variation of parameters, solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=e^{x} \sin x$.
c. Express $Q(x)=4 x^{3}-2 x^{2}-3 x+8$ in terms of Legendre's polynomials.

OR

Q-2 Attempt all questions
a. Prove that $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}$.
b. Obtain power series solution of the differential equation $y^{\prime \prime}+x y^{\prime}+y=0$ about
$x=0$.
c. Show that infinity is not a regular singular point of the Bessel equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0 \tag{04}
\end{equation*}
$$

Q-3 Attempt all questions

a. Prove that
(1) $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x$,
(2) $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
b. Expand $f(x)$ in the form $\sum_{n=0}^{\infty} c_{n} P_{n}(x)$, where $f(x)=\left\{\begin{array}{c}0,-1<x<0 \\ 1,\end{array} 0<x<1\right.$.
c. Find a recurrence formula for the power series solution around $x=0$ for the differential equation $y^{\prime \prime}-x y^{\prime}+2 y=0$.

OR

Attempt all questions
a. Find a complete integral of the equation $\left(p^{2}+q^{2}\right) y=q z$ by Charpit's method.
b. Verify that the Pfaffian differential equation

$$
\begin{equation*}
y\left(1+z^{2}\right) d x+x\left(1+z^{2}\right) d y+x y d z=0 \tag{03}
\end{equation*}
$$

isintegrable and find its solution.
c. Form a partial differential equation by eliminating the function f from

Attempt all questions

OR

a. Prove that a necessary and sufficient condition that there exists between two functions $u(x, y)$ and $v(x, y)$ a relation $F(u, v)=0$, not involving x and y explicitly is that $\frac{\partial(u, v)}{\partial(x, y)}=0$.
b. Show that $\frac{d}{d x} F(\alpha, \beta ; \gamma ; x)=\frac{\alpha \beta}{\gamma} F(\alpha+1, \beta+1 ; \gamma+1 ; x)$ and deduce that
$\frac{d^{n}}{d x^{n}} F(\alpha, \beta ; \gamma ; x)=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}} F(\alpha+n, \beta+n ; \gamma+n ; x)$.
c. Solve: $p-2 q=3 x^{2} \sin (y+2 x)$.
c. Show that the equations $f(x, y, p, q)=0$ and $g(x, y, p, q)=0$ are compatible
if $\frac{\partial(f, g)}{\partial(x, p)}+\frac{\partial(f, g)}{\partial(y, q)}=0$. of x, y, z, then $\mu \vec{X} \cdot \operatorname{curl} \mu \vec{X}=0$.
b. Prove that
(1) $\log (1-x)=-x F(1,1 ; 2 ; x)$,
(2) $\lim _{a \rightarrow \infty} F\left(1, a ; 1 ; \frac{x}{a}\right)=e^{x}$.
c. Define: Semi-linear equation.
d. Find a complete integral of $z=p x+q y+\sin (p+q)$.
e. Define: Pochhammer symbol.
a. Show that $\int_{-1}^{1} P_{n}(x)\left(1-2 t x+t^{2}\right)^{-\frac{1}{2}} d x=\frac{2 t^{n}}{2 n+1}$, when $|t|<1$ and $|x| \leq 1$.
b. Use the method of Frobenius to find one solution near $x=0$ of
c. When n is a nonnegative integer, show that $\left.\frac{d^{n}}{d x^{n}} J_{n}(x)\right|_{x=0}=\frac{1}{2^{n}}$.

SECTION - II

a. Show that the partial differential equations $p=6 x-4 y+1, q=4 x+6 y+1$
b. Eliminate a and b from $z=a x e^{y}+\left(\frac{1}{2}\right) a^{2} e^{2 y}+b$.

Attempt all questions
a. Prove that if \vec{X} is a vector such that $\vec{X} \cdot \operatorname{curl} \vec{X}=0$ and μ is an arbitrary function

Attempt all questions

a. Find a complete integral of $z^{3}=p q x y$ by Jacobi's method.
b. Find the third approximation of the solution of the equation
by Picard's method.
c. Solve: $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$.

